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ABSTRACT

We evaluate the bit error probability of coded lightwave systems emploving
direct detection with OOK modulation, and coherent optical systems with FSK
modulation and noncoherent detection. Block codes, convolutional codes, and con-
catenated codes are investigated. For direct detection systems, both hard and soft

decoding are considered. Only hard decoding is employed in coherent optical sys-

tems.
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I. INTRODUCTION

The benefits of forward error-correction coding for radio communications in an
additive white Gaussian noise (AWGN) channel are well documented [1-3]. With
the state-of-the-art technology of Application Specific Integrated Circuits (ASIC),
both block coding and convolutional coding can be implemented at very high bit
rates. Block coding can be implemented at Gb/s data rates and convolutional coding
at hundreds of Mb/s data rates. This opens the possibility for employing FEC in
lightwave systems to compensate for the loss in the link budget or to relax the laser
linewidth requirement in coherent optical systems [4-5].

In this study, we explore the benefit of FEC for direct detection lightwave
systems employing on-off-keying (OOK) modulation, and coherent optical systems
employing frequency-shift keying (FSK) with envelope detection corrupted by phase
noise. Our work was derived explicitly from [19].

Of practical importance is the use of concatenated codes. Concatenated codes
allow the use of two relatively short codes with modest error-correcting capability,
one as the inner code and the other as the outer code to achieve a large coding gain.
Short codes with modest error-correcting capability simplify decoder design at very
high data rates and thus reduce the implementation cost. Concatenated codes also
allow the use of a short constraint length convolutional code as the inner code with
soft decoding and a short Reed-Solomon (RS) code with modest error-correcting
capability as the outer code. This scheme can achieve a large coding gain which
otherwise can only be achieved with a long constraint length convolutional code or

a long RS code with large error-correcting capability.







II. BIT ERROR PROBABILITY OF DIRECT
DETECTION LIGHTWAVE SYSTEMS

-

A. OOK MODULATION

The direct detection OOK receiver model to be analyzed is given in Fig. 1. The
photodiode detector has a responsivity R = nq/hy (A/W) where 7 is the quantum
efficiency which is near unity for p — ¢ — n diodes, ¢ = 1.6 x 10~!° C is the electron
charge, h = 6.626 x 1073 J S is Planck’s constant, and f is the laser frequency.
The current produced by the photodiode is amplified by a low noise amplifier and
integrated by the integrator. With soft decoding, the analog samples from the
integrator are processed by the soft decoder. With hard decoding, the integrator’s
samples are first detected by a threshold detector to provide hard quantized samples
to the hard decoder.

In practice, the shot noise and dark currents produced by the photodiode
are negligible compared to the thermal noise current generated by the low noise
amplifier. Therefore, they are ignored in our analysis. The complex envelope of the
OOK lightwave signal incident upon the photodiode detection during a coded bit

interval T is

si(t) =VPbhe®™®  i=01; 0<t<T (1)
AMPLIFIER 4
_.| PHOTO G+1T
00K—— E O R ? /ﬂ ~| DECODER |—=-DATA
i
Noise

n(t)

Figure 1: Coded OOK direct detection receiver structure.




where P is peak power, oy = \/p/(1 + p), by = v 1/(1 + pj and p is the laser extinc-

tion ratio. The output of the integrator is
T T
= ($)]? o
Yi=R [ lst)Pdt+ [ n(e)at (2)

where n(t) is the thermal noise current with spectral density Ny (A?/Hz). Substi-

tuting (1) into (2) and denote
T
N= /o n(t)dt (3)

we obtain

Y, =RPT} 4+ N (4)

Note that N is a Gaussian random variable with zero mean and variance ¢? = Ny7T.
We assume that the soft decoding is done by a maximum likelihood soft decoder
using the analog (unquantized) samples Y; in (4). For hard decoding, a bit decision
at the output of the threshold detector employing a threshold setting « is produced

with channel transition probability as follows:

p = lPr{Yo>cr}-i-%Pr{Yl < a}

2
1, {a—RPTH 1 (RPTH -«
- 30(mr) 12 (TR ) ®
where Q(z) is give by
Qe) = == [ e Voas (6)
V2r Je

The minimum value of p at the optimum threshold setting agp, = RPT(4? + b3)/2
is

RPT(b? - b2)
p + Q(——-————2 \/fl'&'T >

-0 (%SNR\/F) (7)
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where
T,

SNR=RP(6} - #)/

(8)

is the signal-to-noise ratio at the threshold detector input, r is the code rate. and

T, is the bit intarval.

B. CODING

Assuming that the decoding is accomplished by a maximum likelihood decoder.
then the bit error probability of the decoded OOK signals employing block code
(n, k) is upper bounded by

<Y InP, (9)

i=1

where n; is the number of code words of weight j, and P; is the probability that the
distance between the received sequence and a weight-j code word is less than the
distance to an all-zero code word

For a convolutional code with rate k/n, the bit error probability is upper
bounded by {1-3]

P, < % Z ijj (10)
J=dy

where w; is the total information weight of all code paths of weight j, d; is the free
distance of the code, and P; is the probability that the all-zero path is eliminated
by a path of weight j merging with it.

With hard decoding, the probability P; in (9) and (10) is given by
| )f: (J, )p‘(l -py j odd

s=(j+1)/2

po | | _ (11)
| %(152 )f”(l-p)j”+ > (J, )P‘(l -py™,  jeven

i=3/241




where p is the channel transition probability in (7). Alternatively P, in (9) can be

calculated by the following upper bound

P < Zn‘, j“('?\)p’(l-p)""' (12)

j=t4+1 T J
where t is the error correcting capability of the block code.

For soft decoding, the decoder selects the code word (or code path) at minimum
Euclidean distance from the received sequence. Thus, P; in (9)-(10) is the probabil-
ity that the Euclidean distance between the received sequence Y and weight-; code
word X is less than the Euclidean distance to the assumed transmitted all-zero

code word Xy. Thus
Py = Pr{|lY - X;|* < |IY - Xo|"} (13)

where X; is a vector with j components, each of value RPTb?, represented bit ones,
and the remaining components, each of value R PTH2, represented bit zeros; the vec-
tor X, represents the assumed transmitted all-zero sequence with each component
assuming the value RPTbH2. The received vector is Y = Xo+ N where N is the zero
mean Gaussian noise vector, each component has variance o? = NoT.

We note that by using Y = Xo + N in (12) we have
P, = Pr{|IN-(X;-X)I* <IN|I*}
= Pr{lINI? +11X; - Xol® — 2Re {{N, X; - Xo)} < |IN|I*}
= Pr{2Re{{N,X; - Xo)} 2 |IX; - Xol*}

X; - Xo 1 :
= PT{RC{<N, m>} > '2'“XJ - Xo”} (14)

where (N, X; — X,) is the inner product of the two vectors N and X; — Xo. We

remark that Re {(N,(X; — Xo)/||X; — Xo||)} is the sum of zero mean Gaussian
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random variables, each with variance o = NoT, and (X; — X0)/||X; — Xo| is 2 unit
length vector. Thus, it is a zero mean Gaussian variable with variance 0?> = NyT.

Hence
Bi = Q\S/RT

(S
('RPT B —
(

IX; - Xo”)
BV

n
O

)

T
- o(3rP@-8)ix )

- Q(ESNR jr) (15)

where r is the code rate and SNR is given in (8).

The above results are applied to various codes to study their effectiveness.
Figure 2 shows the bit error probability P, versus signal-to-noise ratio SNR for
the (7, 4) Hamming code and the concatenated (7, 4)/(15, 11) Hamming/Reed-
Solomon codes with the Hamming code as the inner code. With hard decoding the
Hamming code provides very small coding gain. On the other hand, the coding gain
at P, = 1071 is about 2.3 dB for the concatenated codes with soft decoding for the
Hamming code. The coding gain at P, = 10~'® is almost 3 dB as shown in Fig. 3
for the concatenated (31, 27)/(27, 23) RS/RS with hard decoding where the (27,
23) is the shortened outer code.

Figure 4 shows the performance of a convolutional code with rate 3/4 and
constraint length v = 2 and v = 5. The shorter constraint length v = 2 is more
suitable for high data rates. The coding gain at P, = 10~!° is about 1.5.dB for v = 2
and 2.5 dB for v = 5. Large coding gain can be obtained with the concatenated rate

3/4 convolutional/(31, 27) RS codes with the convolutional code as the inner code




|| Eis I

as in Fig. 5. A coding gain of about 2.8 dB and 4 dB can be achieved at P, = 10~

with soft decoding for the convolutional code with v = 2 and v = 5, respectively.
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II1I. BIT ERROR PROBABILITY OF COHERENT
OPTICAL FSK SYSTEMS WITH NONCOHERENT
DETECTION

Heterodyne and homodyne (coherent) lightwave systems are largely affected
by the combined laser phase noise of the source and local laser oscillators. The
performance deteriorates as the linewidth bit time BT, increases where 8 (Hz) is
the combined laser linewidth of the source and local lasers and T, (s) is the bit
time [6-10]. Coherently detected signals suffer much more from the phase noise
than noncoherently detected signals. The phase noise which can be modeled as a
Brownian motion process causes signal fading and broadens the signal spectrum.
Both effects can be compensated to a large extent by using a wider predetection
filter to pass more of the signal power and an averaging postdetection filter to
provide time diversity and thus alleviating the signal fading effect. Such a technique
was investigated in [11-12] for heterodyne lightwave systems employing ASK and
wideband FSK with noncoherent detection, and in {13} for homodyne lightwave
systems. The use of time diversity is equivalent to the use of simple repetition
codes. Since simple repetition codes can provide a good improvement as reported in
[11-12], one would naturally expect an even larger improvement when more powerful
and efficient codes are used.

In this part we investigate the performance of heterodyne lightwave systems
using wideband orthogonal FSK with noncoherent detection and error-correction
codes. We will show that coding can provide a substantial improvement in the face
of the phase noise and shot noise modeled as a zero-mean Gaussian process with

power spectral density (PSD) No/2 (W/Hz). Furthermore, coding can relax the 5T,

13




requirement a great deai thus enabling the use of inexpensive lasers with a much
larger linewidth than that required by an uncoded system. For total generality we
consider both time diversity and coding for the system under investigation as shown
in Fig. 6. We assume that the frequency spacing |fo — f1| is much larger than 1/T"
where T" is the integration time and is also the sampling time at the summer outputs.
The time T" is selected such that the code symbol time T = rT, = M T’ where M is
a positive integer and r is the code rate. Time diversity of the postdetection filter is
modeled by summing M independent samples of a coded bit after envelope detection.
The output samples are fed to the decoder which can make a hard decision or soft
decision on the received codewords. Equivalently, each branch of the demodulator
in Fig. 6 can be replaced by a bandpass integrator followed by a square-law envelope
detector [12]. In the following section we derive the channel transition probability.
We provide a simple derivation as an alternative to the one in [12].

For mathematical convenience we adopt the envelope notation of a real signal.
Thus, the summer outputs of the signal-present upper branch and the signal-absent

lower branch in Fig. 6 with integration time 7" are

M
Yo = 3 | Xk + neok + jnsokl’ (16)
k=1
< 2
),1 = Zlncllc +jnalkl (17)
k=1
where Z; is given by
A (T .
Zy = = / 70(t) gt 18
T (k=1)T ¢ (18)

and all the in-phase and quadrature noise samples n ., nge(t = 0,1,k = 1,2,--- | M)
are independent and identically distributed (i.i.d.) zero-mean Gaussian random
variables (R.V.) with variance NoT'/4. The laser phase noise process 4(t) can be
characterized as a zero-mean Gaussian process with variance 278t [16], where 8 is

the combined linewidth of the source and local laser oscillators.

14
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Figure 6: Coded coherent optical FSK receiver structure.

Since Y] is the sum of squares of 2M i.i.d. Gaussian R.V.s with zero mean and
variance 0? = NoT"/4, Y, is chi-square distributed with the following probability

density function (pdf) [14]

1 -1 —vy /202
f”‘z(M-l)zzuamy{” len/2, 120 (19)

On the other hand, Ys is the sum of squares of M independent Gaussian R.V.s with
variance o and mean Re{X.} and M independent Gaussian R.V.s with the same

variance o2 but with mean /,,{X,}. Here Re{X,} and I,,{X,} denote the real and

15




imaginary parts of X;, respectively. Thus, Y, is non-central chi-square distributed

with the following conditional pdf [14]

1 (M=-1)/2 Vs
fro(wolv) = — ('y—o) e~lwto)/2? ( yo) , ¥ =20 (20)

202 \ v o?

where Ip-1(-) is the (M — 1)th-order modified Bessel function of the first kind, and

v is the value assumed by the random variable V' defined as

M
V= Z |Z)? (21)

k=1

The conditional channel transition probability of error is given by

p(v) = Pr{Y; 2 Yolv}

0O (- -]
= [ [ ) ftaolo)dadyo (22)
The inner integral can be evaluated as follows:
oo M-1 k 1
jvo fri(yn)dn = e/t ,‘Z_o (2_3;0_2) K (23)

Substituting (20) and (23) into (21), we obtain

e~V M-1 1 oo _ _
p(w) = M-z ,‘X_:o -’;L gM-N2tke=2o 1, (2V/wz )dzx (24)

where w is the value assumed by the random variable W as defined as

w= o LSz (24)
202 207
Using the identity [15)
o 2 )
.[o Y85 [ (2a4/7 )dz = nla¥e /ig—n—v-1L¥ (—%—) (26)
where
Y n m n+ sm
=3 ()5 (21)
16




in (24) we obtain

-w/2 M— 1 k k+ M -1 (w/2)m
p(w) 2 k=0 2k mz=0 ( ) m!
—w/ZM-l(w/2nM1 k+M__1 1
- L e () F 28)
Define
M
SNR = A*T} /2N, , y= E Xi(re/M)
k=1
where r is the code rate, ¢ = 27T, and X; is given by
ko 2
Xi(re/M) = / eV "’M‘”(‘)dt‘ (29)

with ¥(t) as a zero mean Gaussian process of variance ¢; we can express the condi-

tional channel transition probability in (28) as follows:

e—(SNR)rv/?M M-1 [(SNR)ry/?M]" M-3 k+M-—1 1
Ply) = ——5 ;___,; ~ g ( k—n ) x G0
The channel transition probability is given by
p= E{p(y)} = /o p(y) fr(y)dy (31)

where fy(y) is the probability density function of y and can be calculated by the
method given in {12]. Figure 7 shows fy(y) for M = 2, ¢ = 1, and ¢ = 4 for the
uncoded case.

The transition probability p in (31) is applied to (9)-(12) to evaluate the
effectiveness of various codes for coherent optical systems. Figure 8 shows the bit
error probability P, versus the signal-to-noise ratio SNR for M = 1 and-c = 1 (small
phase noise) with hard decoding (15, 11) and (31, 27) RS codes and (31, 27)/(27, 23)
concatenated RS/RS codes. It is seen that coding provides an excellent performance

as compared to an uncoded system, especially for the concatenated code. When

17




M = 2, that is, the bandwidth of the integrators is twice the coded rate. more
signal power passes through the demodulator and the performance of an uncoded
system as shown in Fig. 9 improves remarkably over an uncoded system for M =1
in Fig. 8. In this situation the improvement in perfor:i.ance when RS codes are
employed is less than that in Fig. 8 but the improvement is still considerable.
especially for the concatenated (31, 27)/(27, 23) RS/RS codes. When the phase
noise is large as shown in Fig. 10 for ¢ = 4, the use of both RS codes and larger
integrator bandwidth M = 2 achieves considerable improvement for the (15, 11) and
(31, 27) RS codes and the concatenated (31, 27)/(27, 23) RS/RS codes. Figures 11
and 12 show the performance of rate 3/4 convolutional codes with hard decoding for
M =2, and ¢ = 1 and ¢ = 4, respectively. It is observed that when the constraint
length is small, » = 2, the improvement is small. The performance of rate 3/4.

v = 5 convolutional codes is slightly less than that of RS codes (15, 11) or (31, 27).

18
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Figure 7: Probability density function of y for M =2, ¢ =1, and ¢ = 4.
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Figure 10: Coded P, versus SNR for coherent optical systems employing the (15,
112 and (31, 27) Reed-Solomon codes and the concatenated (31, 27)/(27, 23) Reed-
Solomon /Reed-Solomon codes with M = 2 and ¢ = 4.
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IV. CONCLUSIONS

From our investigaion we conclude that error correction coding can improve
the performance of both direct detection and coherent optical systems. The im-
provement is considerable when concatenated codes are used. From the practical
point of view, short RS codes with modest error correcting capability can be con-
catenated to provide large coding gain and at the same time can be implemented at
high data rates. Convolutional codes with soft decision also provides good coding
gain at moderate data rates for direct detection systems. It remains to be seen
how much coding gain can be obtained with soft decision convolutional codes for
coherent optical systems.

Our contributions in this thesis are the numerical results obtained from the

analytical work in [19] as shown in equations (1-31).
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APPENDIX

The following MATHEMATICA (Stephen Wolfram, 1993) and MATLAB (The Math

Works, 1993) codes offer the formulations for:
The convol: .ion method for the determination of the probability density func-
tion

The computation of bit error probability for direct detection and coherent

detection

1. Obtaining of pdf of y by M-fold convolution

xi=[....... 1 Convolution method for finding pdf of y
.................. Input of pdf of x

b &4 < x1,x2 are i.i.d

x3=0:0.02:2;

y1=0.02*conv(x1,x2); = ........ce.... 0.02 is integer as interval

.................... 2nd convolution

2. Bit error probability for direct detection

2.1 Uncoding case

function y=q(x) = .......... Definition of q(x) in MATLAB
y=0.5*erfc(x/sqrt(2))  ............ Use error function defaulted in
MATLAB

snrdb=6.5:0.02:12.1;
snr=10. " (snrdb*0.1);
pu=q(snr*0.5); = ........... Uncode case

2.2 Concatenated convolutional hard and soft/RS coding

Hi-input(’input inner convolution code order as n,k,v,df,wd,wd+1...’);
................ Need to input i
tvo matrix,one for RS code(outter),
one for convolution (inner)
M2=input (’input outter RS code as n,k’);
ni=M1(1); ki=M1(2); n2=M2(1); k2=M2(2);
ri=ki/n1; r2=k2/n2;
m2=log2(n2+1); t2=(n2-k2)*0.5;
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rarisr2;
p=q(snr*r-0.5%0.5);  ............... Equation (7)
pit=0}; ... Solve five pj values
Hard case
pi2=[1; ...l Soft case
for d=0:4
pj=0;
juM1(4)+d;
if rem(j,2)==1 ............... Check odd or even case
for i=(j+1)/2:j
pj=pj+bino(j,i)*p. i.*(1-p).~(j-1);
end
else
for i=j/2+1:j
pi=pj+bino(j,i)*p."i.*(1-p) .~ (j-1);
end
pj=pj+0.5*bino(j,0.5%j)*p.~(0.5%j) .*(1-p).~(0.5%j);
end
pit=lpit;pil: Hard case’s pj
ppijj=q( (r*j)"0.5%snr*0.5); ......... Soft case’s pj
pi2=[pj2;ppijl;
end
pb.conv=0; ................... Solve for pb for hard case
Ppbb_conv=0; .................. For soft case
for h=1:5 .............. . ..., S is from wd to wd+4

pb_conv=pb_conv+Mi(h+4)*pj1(h,:);
ppbb._conv=ppbb_conv+Mi (h+4)*pj2(h,:);

end

pb-conv=pb_conv/ki;

Ppbb_conv=ppbb_conv/k1;

ps=1-(1-pb_conv)."m2; ........ Solve for ps
ppss=1-(1-ppbb_conv) . “m2;
pb=0; ppbb=0; ................. Solve for pb

for j=t2+1:n2
pb=pb+(j+t2)/n2*bino(n2,j)*ps.j.*(1-ps) .~ (n2~j);
ppbb=ppbb+(j+t2) /n2*bino(n2, j) *ppss.~j.*(1-ppss) . (n2-j);
end

pb=pb#*(n2+1)/(2*n2);

ppbb=ppbb* (n2+1)/(2*n2) ;

ss=linspace(1,len,51); ......... Plot statement

semilogy (snrdb(ss), pu(ss),’*’,sardb,pdb,’--’,sanrdb,ppbb)
axis([snrdb(1) snrdb(lemn) 10-(-15) 1])

3. Bit error probability for coherent detection .

3.1 Uncoding case

yii={. . ... .ol ) 2 Input pdf value of y
M=2;
S=mB ;i ettt Wanted SNR
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yi=Table[y,{y,0.01761,1.9,0.02}];

pil=Table[Sum[(((S*y)/(2*M))"n)/(n!)

*Sum [Binomial [M+k-1,k~-n]

*(2‘(-k)) 9{konoH"1}] 3{ntolu-1}]

*Exp [-(S*y/(2*M))1/(2°M),

{y,0.01761,1.9,0.02}];

p2=Table[{y1[{i]]),p1[[il]*»y11[[i]]},

{i,1,Length(y1]}];

p3=Interpolation(p2, InterpolationOrder -> 1]
.................. Connect each point

p4=NIntegrate[p3[y],{y,0.01761,1.89761}]

3.2 concatenated RS/RS coding

yit={........... ;o e For coding case’s pdf of y value
For[M=1; g=1; ni1=31; n2=27; ki1=27; k2=23; rci=ki/ni;

rc2=k2/n2; S1=10; ...t Inputs of SNR and code rate
S=Si*rci*rc2, S +=5,

yi=Table[y,{y,0.04283,0.97772,0.02}];
p1=Table[Sum[(((S*y)/(2*M))"n)/(n!)

*Sum [Binomial [M+k-1,k-n]

*(2°(-k)),{k,n,M-1}1,{n,0,M-1}]

«Exp [-(S*y/(2xM))]1/(2°M),

{y,0.04283,0.97772,0.02}];

p2=Table[{y1[[i]],p1[[i)]*»y11[[i]]},

{i,1,Length(y1]}];

p3=Interpolation(p2, InterpolationOrder -> 1i];
p4=NIntegrate[p3(y],{y,0.04283,0.96283}];

Print[p4§]

3.3 Convolutional coding

P
len=length(p);
M=[4,3,2,3,15,104,540,2520,11048); .......... Matrix order as
n,k,v,df ,wd,vd+1,wd+2,...

sM(2)/M(1); et e e Solve for convolution code in
matrix
pjt=l............... ) Solve five Pj values
for d=0:4 ........ ... it d i.e., df which value depend on
veight wd+4

P)
pj=M(4)+d;

if rem(j,2)==1 ........... .. iieeen Check odd or even case
for i=(j*1)/2:j

pj=pj+bino(j,i)*p. i.*(1-p).~(j-1);

end
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else

for i=j/2+1:j
Pj=pj+bino(j,i)*p.~i.*(1-p)."(j-i);
end

Pj=pj+0.5+bino(j,0.5%j)*p.~(0.5%j).#(1~p).~(0.5%j);
end

pil=lpj1;pjl;

end

pb=0;

for h=1:5

pb=pb+M(h+4)*pji(h,:);

end

pb=pb/M(2);

plot(s,pb) ... Plot statement
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